LECTURE SUMMARY 12.2

Nonlinear System of Differential Equations

$$
\left\{\begin{array}{l}
x^{\prime}=F(x, y) \\
y^{\prime}=G(x, y)
\end{array}\right.
$$

1. How to find equilibrium points: let $x^{\prime}=0$ and $y^{\prime}=0$.
2. Linear approximation using Taylor expansion.(Not requiring.)
3. Theorem Suppose that F and G have continuous second derivatives. Then the stability of an equilibrium point $\left(x_{0}, y_{0}\right)$ of (1) may be assessed by finding the eigenvalues of the Jacobian matrix

$$
\left[\begin{array}{ll}
\frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} \\
\frac{\partial G}{\partial x} & \frac{\partial G}{\partial y}
\end{array}\right]
$$

evaluated at $\left(x_{0}, y_{0}\right)$.
The stability may be described as follows.

Eigenvalues	Stability	Equilibrium points
Both positive	Unstable	Node (or possibly a spiral point for repeated eigenvalues)
Both negative	Asymptotically stable	Node (or possibly a spiral point for repeated eigenvalues)
Opposite signs	Unstable	Saddle point
$\alpha \pm \beta i, \alpha>0$	Unstable	Spiral point
$\alpha \pm \beta i, \alpha<0$	Asymptotically stable	Spiral point
$\pm \beta i$	Indeterminate	Center or Spiral point

