LECTURE SUMMARY 12.2

FRIDAY, JULY 29, 2016

NONLINEAR SYSTEM OF DIFFERENTIAL EQUATIONS

(1)
$$\begin{cases} x' = F(x, y) \\ y' = G(x, y) \end{cases}$$

1. How to find equilibrium points: let x' = 0 and y' = 0.

2. Linear approximation using Taylor expansion.(Not requiring.)

3. **Theorem** Suppose that F and G have continuous second derivatives. Then the stability of an equilibrium point (x_0, y_0) of (1) may be assessed by finding the **eigenvalues** of the Jacobian matrix

$$\begin{bmatrix} \frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} \\ \frac{\partial G}{\partial x} & \frac{\partial G}{\partial y} \end{bmatrix}$$

evaluated at (x_0, y_0) .

The stability may be described as follows.

Eigenvalues	Stability	Equilibrium points
Both positive	Unstable	Node (or possibly a spiral point for
		repeated eigenvalues)
Both negative	Asymptotically	Node (or possibly a spiral point for
	stable	repeated eigenvalues)
Opposite signs	Unstable	Saddle point
$\alpha \pm \beta i, \alpha > 0$	Unstable	Spiral point
$\alpha \pm \beta i, \alpha < 0$	Asymptotically	Spiral point
	stable	
$\pm\beta i$	Indeterminate	Center or Spiral point